

We Make Your MEMS Work

IMT Open MEM Foundry Services & Experience of Micro-fluid MEMS

Dr. Joseph Luo

China Country Manager Email: Joseph.Luo@imtmems.com, Cell: +86 13923432260 Jan., 2015

Company Introduction

- Largest pure-play MEMS foundry in US
- Founded in 2000
- MEMS Services:
- Process Development
- Volume manufacturing
- > 350 MEMS processes developed
- 13,000 m², Manufacturing Facility, Santa Barbara, CA
- 3,000 m², class 100 clean room
- 6" wafers prodution line
- 8" Fab in development
- Broad MEMS intellectual property portfolio:
- patents, trade secrets and know-how
- Staff of ~110, ~15% PhD's

IMT Foundry Services

Turn-key MEMS Design and Manufacturing Services

- Photolithography
- Deposition
- Wet chemical etch/electroplating
- Reactive Ion Etching
- Ion milling
- CMP planarization and wafer grinding/polishing
- Wafer bonding
- Cleaning
- Die slice
- Assembly/packaging
- Testing
- Metrology/analysis
- Design/Modeling

IMT Focus Technologies

Technology

Optical Comm

Sub-Wavelength Anti-Reflective Structures (SWARS)™

Magnetics

Electromagnetic Actuators

InfraRed

Switches

Focal Plane Array (Wavelength Shifter)

Latching Switches

3D Microfluidics

<u>Growth Driver</u>

Data centers, 4G cellular, FTTH, & visual media

Pervasive in Automotive, Handsets, & Biotech fluidics

Security: smaller size & weight, lower cost Automotive & Handsets: night-vision cameras

Small size, lower cost & power Replace Reed Relays and GaAs

Better medical diagnostics & care

3D Packaging (WLP and TSVs)

Diverse Customer Base

Rapid MEMS Development and Manufacturing

Technology Development

MEMS Process Customization Design Implementation Design for Manufacturing

Prototype and Proof of Concept

Quick Wafer Cycle Time Staged Wafers "Single Roof" Co-Location with engineering

High Volume Manufacturing

Smooth Transition from Development to Production Scalable Manufacturing Capacity and Small Lot Flexibility Manufacturing Control Systems

Development

Volume Manufacturing

Fast Time-to-Market & Fast Time-to-Volume

Design for Manufacturability: Phase-Gate Development

- Finalize Specs
- Training and Certification

Volume Production Systems

- basic: ISO 9000, SPC
- advanced: ISO 16949 for Automotive & Handsets, ISO 13485 for Medical

Parallel Paths for CMOS and MEMS

SSER LITI

	CMOS	MEMS
	Transistor	Valves, actuators, springs, mirrors, diaphragms, etc.
Basic Structure		
	Smaller transistors	
Die siz [.35ur Trend	$\begin{bmatrix} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	New chemistries & materials New structures
Key Capabilities	Photolithography,	DRIE, lift-off processes, plating,
nat	ion implantation	water bonding

CMOS & MEMS Integration – 1

CMOS

MEMS

CMOS & MEMS Integration - 2

Talent Composition

- CMOS foundries:
 - Electrical Engineering
 - Device Physics

- MEMS foundries
 - Chemistry
 - Mechanical Engineering
 - Material Science
 - Metallurgy
 - Electrical Engineering
 - Physics
 - Optics
 - Magnetics
 - Biology

Broad Offering of Elements, Alloys and Gasses for MEMS Function & Performance

hydrogen 1 H 1.0079				50114			1,000 V		22.2.3			2.5.5	57 6 K - 4	5. (AL)				helium 2 He 4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Ĺi	Ве												B	Ċ	N	Ó	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												A	Si	Ρ	S	CI	Ar
22.990 potassium	24.305 colcium		seondium	titanium	vanadium	obromum	manaanasa	lean	cobalt	nickol	20200	zino	26.982 dollium	28.086	30.974 orsenio	32.065 selenium	35.453 bromine	39.948 keyptop
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	20000000	110010111 41	42	43	1001ernorn 44	45	26	47	28 cadmium	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ĩ	Xe
85.468	87.62		88.906	91.224	92,906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	gold 79	80	81	82	83	84	astatine 85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91	137.33	1.000	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]

Competing Foundry Material Support

Source: Competitor Website

Noble Metals

SEERIIIII -

Materials	Applications	Function	Benefits
Gold	RF Switches Optical Comm Devices	Bondline for wafer level packaging Mirrors Circuit traces	Corrosion resistant High IR reflectivity Electrical & thermal conductivity
Silver	LED lighting reflectors	Mirrors Heat dissipation	Highest reflectivity in visual spectrum Highest electrical & thermal conductivity
Platinum	Sensors BioMEMS	Heaters Electrodes Diffusion Barrier	Corrosion resistant Very good barrier Indestructible
Rhodium	RF Switches Test Probe Tips	Contact surfaces	Wear resistant

Magnetic Materials

Materials	Applications	Function	Benefits
Nickel	Thermistor Devices Switches	Barrier Layer for Wirebond Pads Thermal Actuators Electrodes	Corrosion resistant Can be electroplated
Nickel- Iron	Microfluidics pumps & valves Magnetic sensors	Magnetic Flux Guides Magnetic Actuators	Simple processing High permeability Zero magnetostriction Can be electroplated
NiCr	Sensors BioMEMS	Heaters Electrodes	High Resistivity Oxidation resistant
CoPtCr	Gene Sequencing Mag Read Sensors	Permanent Magnets	Very high coercivity

Other Metals

Materials	Applications	Function	Benefits
Molybdenum	Accelerometers Gyroscopes	High Temperature Diffusion Barrier Layer for Electrodes And Circuits	High temperature operation Sacrificial layer (easily etched)
Ruthenium	RF switches	RF And DC Switch Contacts	Long Life
Tantalum	Sensors	Resistors	Can be reactively sputtered
	Sensors	Heaters	Corrosion resistant
Ni Alloys	BioMEMS	Electrodes	Very good barrier
	Springs		Indestructible
Copper	RF Switches Si interposer	TSVs Interconnects	Low resistance Can be electroplated and CMP'ed
mt	Confidential Informa	tion	15

Sputtered Dielectrics

Materials		Applications	Function	Benefits
Alumina Al ₂ O ₃		Magnetic sensor LED lighting	Optical Coating Hard Masking Passivation	Broad optical spectrum
Titania TiO ₂		Microlens Mirrors	Optical coating	Catalytic
Tantalum Oxide		RF switches	Resistor	Can be reactively sputtered
Tantalum Nitride	Au ^p U ^T I thin-film electrode Tantalum-nitride thin-film resistor	RF switches	Resistor Diffusion barrier	Can be reactively sputtered
Diamond-like Carbon		AFM probes	Hard Coating For MEMS Wearing Structures	Low temperature deposition
mt		Confidential Information		

Piezoelectrics

SSEALIII.

Materials		Applications	Function	Benefits
Aluminum Nitride AIN		RF Filters Strain gauges Chemical sensors Energy harvesting	FBAR Resonators Mechanical Actuators	Good alternative to PZT Very high thermal conductivity
Zinc Oxide ZnO		IR microbolometer	Optical coating	High Resistivity Change As A Function Of Temperature
Lead Zircronium Titanate PZT	Diaphragm Pump Chamber Inlet Flap €000 μm 0utlet Flap	Inkjet print heads	MEMS Micro- Actuators Nozzles	Very High Force Generation

Substrates

Materials		Applications	Function	Benefits
Quartz	Input Transducer SAW Piezoelectric Substrate	RF filter Optical re-polarizer	Surface Acoustic Wave Resonators Optical Half Wave Plates	Can be processed like glass
BoroFloat Glass		Microfluidics devices Optical communications devices	Transparent lid for wafer-level packaging	CTE matched to Silicon
Float Zone Si		RF Switches	Base substrate wafer	High resistivity Very low loss in RF application
MCZ Si		FTTx	Base substrate wafer	Similar Characteristics as Float Zone

Gas Sensors & Chemical Sensors

SSER LI III

Materials		Applications	Function	Benefits
Pyrolytic Carbon	Sering Lyres LOT Sectores Feature	Chemically inert sensor electrodes	Sensing electrode	Simple Process Photo-Definable
Metal Oxide TiO2 ZnO SnO		Chemical Sensors	Sensing electrode	Simple Process

Statistical Quality and Process Control

- ISO 9001: 2000 certified
- Comprehensive process control plans
 - Electronic control charts with automated notification of out of control conditions
- Industry-best SQC methodology:
 - Each process characterized for variability and statistical sampling applied
 - Critical processes optimized using design of experiments (DOE)
 - Processes controlled using statistical process control (SPC) and reaction plans
 - Each gage assessed for capability (measurement error) and controlled using SPC and reaction plans
- Rigorous operator qualification

Manufacturing Quality Systems

- Eyelit paperless Manufacturing Execution System (MES)
- Infinity relational database software, electronically linked to Eyelit
 - Data input auto-loaded directly into > 300 control charts (product, process, equipment, gages)
 - Tracks all lots and wafers through the process real time
 - Tracks and controls all reworks
 - Tracks equipment status and provides reports
 - · Schedules all daily equipment start up testing
 - Schedules all equipment preventative maintenance
 - Tracks daily and weekly wafer moves by device type
 - Tracks cycle time by device type
 - Tracks wafer yield by device type
 - Collects wafer data and transmits to control chart system
 - Provides detailed process instructions to wafer operators
 - Ensure operators are tracking wafers into qualified equipment
 - Prevents operators that are unqualified from performing certain operations
 - Places future holds on wafers and lots as required

Manufacturing Quality Systems

- Full documentation of process and procedures includes:
 - Customer and process specs (visual & parametric)
 - Product acceptance criteria
 - Incoming material acceptance
 - Equipment and manufacturing procedures
 - Document and Change control
 - Training and operator/tech certification procedures
- Transfer from paper travelers to Eyelit/Infinity system
- Implementation of process/product audits, validations, process reviews
- Establishment of weekly program-specific operations meetings
- Implementation of SPC
 - Control charts, reaction plans, process capability, gage capability

3D Integration

Confidential Information

IMT's Portfolio of WLP Bonding Techniques

SEERHIIII

	Useful for		Bond Line		
Bonding	CMOS+MEMS	Bonding	Width		
Technologies	Bonding	Temperature	Requirement	Cost	Benefit
Hermetic					
					Manufacture SOI starting
Fusion	No	1050 °C	10 microns	Low	materials
Anodic	No	400 °C	50 microns	Low	Only direct Si-glass bonding
Glass Frit	Yes	400 -450°C	400 microns	Low	High strength
Au-Au					
Thermocompression	Yes	250-350 °C	10 microns	Low	Narrow bondline
Metal Alloy	Yes	< 200 °C	50 microns	Med	Narrow bondline
Non-Hermetic					
Polymer	Yes	< 200 °C	10 microns	Lowest	Lowest cost

IMT Through-Silicon Vias (TSV)

- TSV's can be used to provide electrical connectivity from outside to inside of chip
 - Low-resistance copper vias
 - Polysilicon vias
- 99.96% yield
- Copper vias offer extreme performance
 - DC resistance: < 0.01 ohms per via
 - IL: -0.01dB @ 6Ghz
 - 15µm diameter x 60µm depth via in production

Wafer Bonding

- Bonding Method Selected to Best Suit Customer's:
 - Design/die size
 - Temperature budget
 - Materials requirement
 - Hermeticity requirement
 - Packaging environment
 - Gas/pressure requirement
- Hermeticity in Production
 - >99% yield through wafer bond, slice, assembly, RoHS solder reflow, packaging, shipping
 - Hermeticity verified by probing on-board thermistors
 - Vacuum, atmospheric, or partial pressure with unique gases
 - No detectable leak rate during air bombing at 2 atm for 1,000 hours at 150C (verified by independent lab) – certified for >20 yr life

Wafer map of 1 wafer showing 3 failed dies

IMT Microfluidics Platforms

5 Key Technologies Required

• January 2015

12 Years Manufacturing Microfluidic Devices

- Broad Experience Designing ۲
 - Ultra high speed valves
 - Micro pumps
 - Micro channels
 - Micro channel molds
 - Fluidic sensors
- Silicon and Glass
 - Advanced MEMS processes
 - Wafer Level Bonding
- Fluidics Modeling and Design for Manufacturing
- Medical, Biotech and ullet**Industrial Applications**

Microfluidic Platforms

5 Key Platforms for Microfluidic MEMS Devices

Microfluidic Channels

Valves

Wafer Bonding

Pumps

Microfluidic Channels

Needed for Fluid Handling

•Holes and Manifolds

- Connection to Tubes
- Distribution of fluid within the device
- •SOI Starting Wafer
 - Deep Etch using Bosch process (DRIE)
- •3D micro channel manifold using MEMS technology
 - Enclosed channels direct fluid to nozzles
 - Channel widths down to 5 um
 - Nozzle diameters down to 50 um
 - Close clustering of nozzles
 - Mixing capability within channels

Easy Interface with Your System

- Numerous options for manifold interface
 - Bonded tubes
 - 1/32 to 1/16 in. diameter standard
 - 160 um tubing
 - Secondary manifold interface
 - Mechanically mounted
 - Quick replacement
 - Compliant gasket

Secondary manifold

Tube mounting holes

Manifold with Mounted Tubes

Wafer Bonding

Needed For Multi-Level Fluid Distribution

- •Various Bonding Techniques:
 - Typically use Polymer, Au Compression and Anodic Bonding
- •Microfluidics Devices can use 5 or more wafers in a single device
- •Bond Process needs to meet the specific application requirements:
 - Medical Grade, Implantable, Resistant to Chemicals

Needed to Control Fluid Flow

•Valves can present a large challenge:

- Rugged and Flexible is difficult
- Able to seal well enough to create adequate flow
- Limited resistance to ensure efficiency of the pump

Actuator Techniques

Needed to Create Movement of Pump Membranes and Drive Gates

•IMT uses Magnetic Actuation for most Microfluidic Devices

•Magnetic Motors Are Excellent For:

- Pump Mechanisms
- Gate Mechanisms
- Stirring Mechanism
- •Magnetic
 - High Force
 - High Speed
 - 0 to 1.4 m / sec and back to 0...1.4 MS
 - 12000 G acceleration, 22 um stroke
 - Requires external magnetic field

High Speed Gate

Magnetic Actuation Options

MEMS Pump Platform Technology

Needed to Drive Fluid Movement

- Magnetic Drive Dual Chamber Pump
- Planar Construction
- •High Fluid Capacity
- •Easily Manufactured in Standard MEMS Processes

Dual Cycle Platform Specifications and Status

- Implementations targeting lower flow rates and high viscosity fluids
 - Application viscosity: 1,000 cPa.s
 - Flow rate: 0.1 nl/stroke
 - Application frequency: 0.3Hz
 - Tested to 500Hz
 - Tested to 3.0KHz with water
 - 0.4 mm x 1.8 mm total footprint including reservoir
- Derivative design for higher flow rates low viscosity
 - Flow rate: 40 -70 µl/min
 - Viscosity: 1.0 cPa.s
 - Size: 2.5mm x 0.8mm
 - Range of frequency: 1 2kHz
 - Backpressure: 0.3 atm

Magnetic Actuator Platform(Exploded View)

Сар

Lid, visual detection, shield, detection slit

Device Layer

Actuator Magnetic actuator Magnetic valve Stirring Fluidic channels Electrodes, electrolysis, electro-synthesis Aqueous expanding material – solgel timing circuits

Support Section

Reservoir Tubing attachment Test wells Fluidic channel Electrical circuits Electrodes

Design for Manufacturability

- Design from Customer Specifications
- Design for Manufacturability
- Engineering and Modeling Assistance

High-speed microfluidic valves

Computational Fluid Dynamics

Magnetic Modeling

Finite Element Analysis

Microfluidics Case Study 1

Particle Characterization Device

- •Weighs single cells or proteins
- •Resonance change indicates mass
- •Cantilever beam 40um long, 6um wide
- •Cavity pressure < 10 mTorr
- •Resolution 27 attograms
- Integrated microfluidics
- •10 mask layers

Applications

- Particle metrology
- Diagnostics
- •Global Health
- •Cytometry
- Proteomics

"The ability to measure samples in liquid is essential in many biological applications...they have improved the performance of their system further to achieve a mass resolution of 27 attograms."

Nature Nanotechnology, July 2010

Microfluidics Case Study 2

Enables High Purity Cell Therapy

- High-speed, massively parallel sorting for cancer, autoimmune treatment, and radiation exposure
- World's fastest MEMS at 0 to 1.4 m/sec back to 0 in 15 microseconds
- Leverages IMT process modules
 - IMT design and specifications that incorporate microfluidics, actuators and 4 wafers bonded at wafer-level

- Four wafer bonded stack

World's fastest MEMS (actuator for cell sorting)

Laser input, reflective and refractive optics on-board

3D Microfluidics enabled by Deep Reactive Ion Etch (DRIE)

MEMS Cell Sorter Evolution

• On-chip fluidics (manifolds/valves/actuators)

Cell Sorter Device

- On-chip optics high efficiency illumination/detection
- 3-D structure, 4 wafer bonded stack

Sorted cells

IMT Single Piston Pump

Double Click on Image to Activate

- IMT has experience developing more and 50 Microfluidic Devices for Customers
- Key Platforms for Successful Microfluidics Development
 - Channels, Valves, Actuators and Pumps
- Demonstrated up to 5 Bonded Wafers in a Device
- Design Expertise and Modeling has been developed for more than 12 years.

