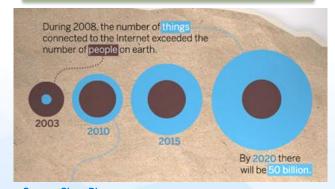


Dejia/DJ Kong Advantest

IoT/IoE/M2M/IoTS

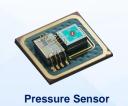

Internet of Things (IoT)
Internet of Everything (IoE)
Machine to Machine (M2M)
Internet of Things & Services (IoTS)

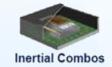
IoT Concept

- A new wide range of applications enabled by the combination of:
 - Sensors / Actuators
 - Computing (+ Software)
 - Connectivity (Wireless, Wired)
- Largest Growth Market in the coming years
 - 50B Installed units in 2020

Source: Cisco Blog

Source: STMicroelectronics


Building Blocks→ Sensors / Actuators


Accelerometers

Established and emerging technologies:

- Motion Mems:
 - » Accelerometers, Gyroscopes, Compasses
- Environmental:
 - » Barometric Pressure, Temperature, Humidity, UV, CO, CO2, Air Quality, Gas Flow sensing
- Health:
 - » Blood Pressure, Glucose Monitor, Heart Rate, ECG Monitor
- Optical Sensors:
 - » Proximity, Ambient Light, RGB Color Image Sensors
- Touch Sensors:
 - » Multi-Touch, Touch less Hover, Pressure Touch
- RF Sensors:
 - » GPS / A-GPS, Wi-Fi, BT Low Energy, NFC
- Other Sensors:
 - » MEMS Microphones, Biometric Sensors, Fingerprint, Bio Sensors

Optical MEMS

RF MEMS

Others

Gyroscopes

(Digital Compass)

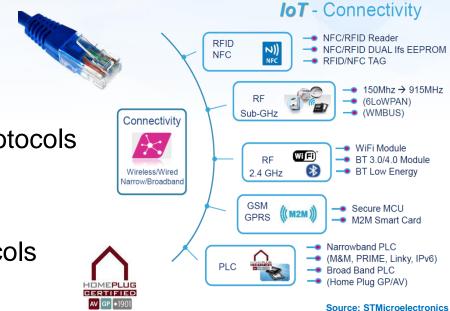
Microfluidics

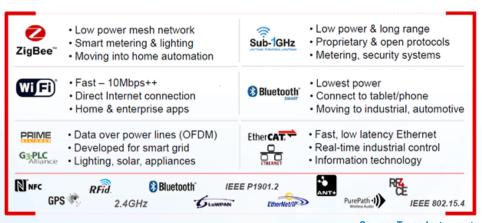
Building Blocks — Computing

- Many requirements depending on target application
 - Low Power is the Key
 - Medium Flash size 32KB-256KB
- ARM Microcontroller is mostly used but not only
 - STM → STM32F2 Cortex[™] M0 , STM32LO Cortex[™] M4
 - ADI → ADUCRF101 Cortex™ M3, ADUC702632 ® MCU
 - TI → 66K2Hx I multicore DSP+ Cortex[™]-A15
 - QUALCOMM→ SnapDragon™

Source: Texas Instruments

STM32F2 Cortex M4 - High Performance MCU




Building Blocks — Connectivity

- Many different solutions
 - Low Power is the Key (Low Data Rate)
 - Medium Range 90% of the Market < 100m
- Standard and proprietary Wireless protocols
 - 2.4 Gz : BluethootNRG, WiFi
 - Sub Ghz : NFC, RFID, Z-Wave, Zigbee, Spirit-1
- Standard and proprietary Wired protocols
 - Ethernet, Mbus
 - LonWorks, KNX

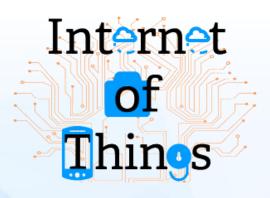

RF Connectivity Pro & cons

- Power/Range/Cost are the 3 axis
- Security adding additional constraints
- Application success will drive Standards

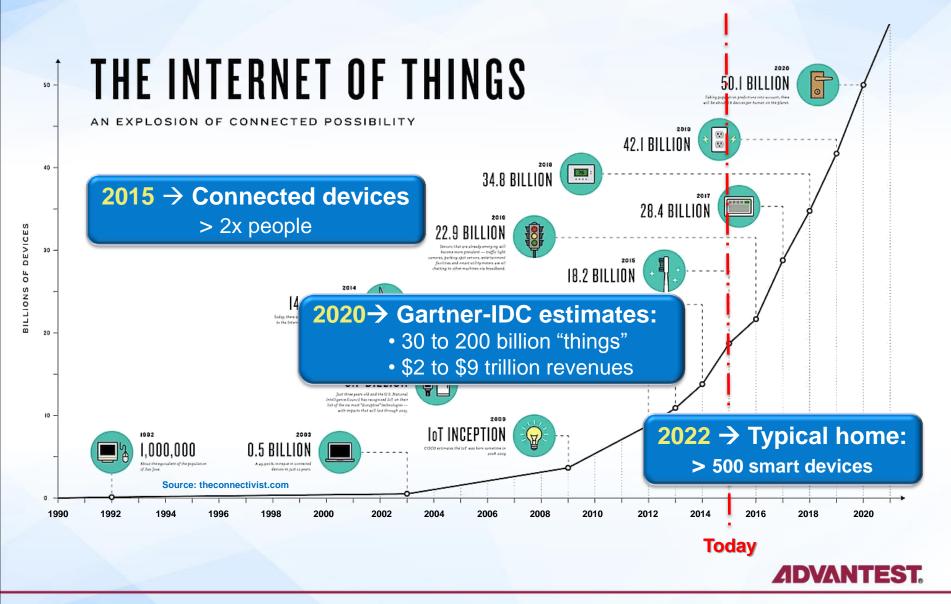
RF STANDARD))NFC))	RFID	Bluetooth	Bluetooth 4.8	ANT.+	Proprietery Sub-GHz & 2.4 GHz	W iFi	ZigBee [°]		EI3	WirelessHART	DLOWPAN Pré-based Low-power Wreless Personal Area Networks	wimax	((10.3G) 3G
Network	PAN	PAN	PAN	PAN	PAN	LAN	LAN	LAN	LAN	LAN	LAN	LAN	MAN	WAN
Topology	P2P	P2P	Star	Star	P2P, Star, Tree Mesh	Star, Mesh	Star	Mesh, Star, Tree	Mesh	Mesh, Star, Tree	Mesh, Star	Mesh, Star	Mesh	Mesh
Power	Very Low	Very Low	Low	Very Low	Very Low	Very Low to Low	Low-High	Very Low	Very Low	Very Low	Very Low	Very Low	High	High
Speed	400 Kbs	400 Kbs	700 kbs	1 Mbs	1 Mbs	250 kbs	<100 Mbs	250 kbs	40 Kbs	1.2 Kbps	250 kbs	250 Kbs	<100 Mbs	<7.2 Mbs
Range	<10 cm	<3 m	<30 m	5-10 m	1-30 m	10-70 m	4-20 m	10-300 m	30 m	800 m	200	800 m SubGHz	50 km	Cellular network
Applications	Pay, get access, share, initiate service, easy setup	Item tracking	Network for data exchange, headset	Health and fitness	Sports and fitness	Point to point connectivity	Internet, multimedia	Sensor networks, building and industrial automation	Residential lighting and automation	Building automation	Industrial sensing networks	Senor networks, building and industrial automation	Metro area broadband Internet connectivity	Cellular phones and telemetry
Cost Adder	Low	Low	Low	Low	Low	Medium	Medium	Medium	Low	Medium	Medium	Medium	High	High

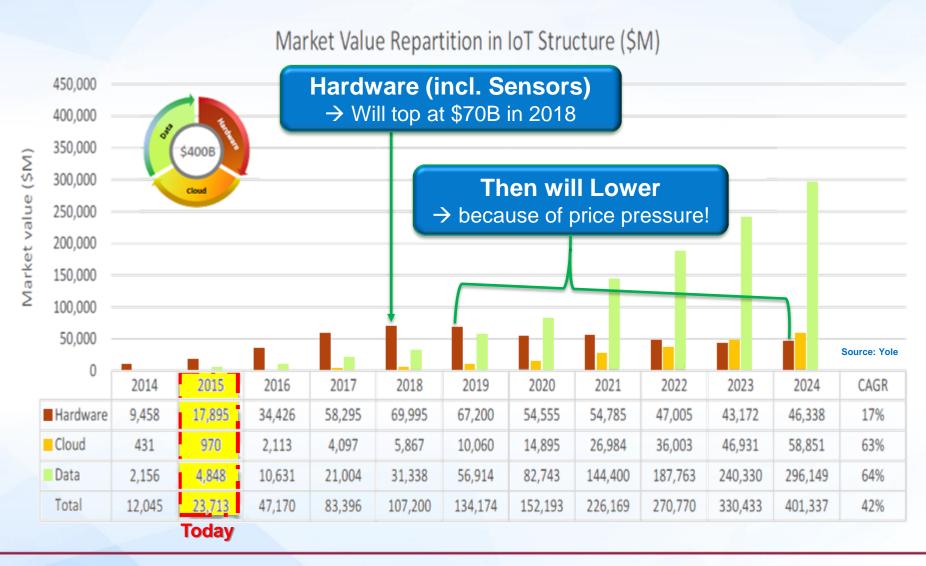
Different Integration opportunities

- Module (System on board)
 - Short time to market
 - Low risks
 - High costs
- SIP (System in Package)
 - Enabling HVM
 - Medium risks
 - Medium costs
- SOC (System on Chip)
 - Enabling Profit
 - Highest risks
 - Lowest costs



Source: IC ASE Group




IoT Expected Growth

Roadmap for 50 Billion connected devices

IoT Expected Growth

An explosion of Market Players

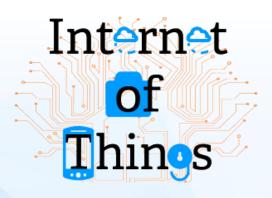
Smartphone/Tablet Market Wave

- Few application Types
- 5 billions Devices
- Few Players to covers 80% of Revenues

IoT Market Wave

- A wide variety of applications
- 50 billions Devices
- Top Players will address less than 40%

10 x Volumes100 x Applications1000 x Players



- •100 x applications to drive 10x device volumes:
 - Few High Volume Runners
 - Many Medium Volume Runners
- Testing Flexibility to be a key requirement to support applications variety
 - Same Test Cell to support many type of devices
- Hundreds of Tier-2 players forced to implement Fabless model
 - Cannot invest in Test equipment to Match ASP
 - A step of flexibility increase required at OSAT

IoT Test Challenges

IoT Test Challenges

Integration creates new device class

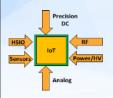
 Compute/Security, Communication, Smart Power, Sensors & Actuators

Low power devices

- Smaller voltage swings
- Low leakage

Cost pressure

- High volume, falling ASP


Unpredictability of emerging market

- Low volume/High mix (High runners?)
- In-house vs Outsource

Technical & economic trends are breaking installed tester base

IoT Test System Requirements

Integration creates new device class

- Compute/Security, Communication,
 Smart Power, Sensors & Actuators
- → ATE system covering all domains (Dig/HS/DC/MX/RF/Memory)
- → Universal Pins

Low power devices

- Smaller voltage swings
- Low leakage

→ DC accuracy

Cost pressure

- High volume, falling ASP

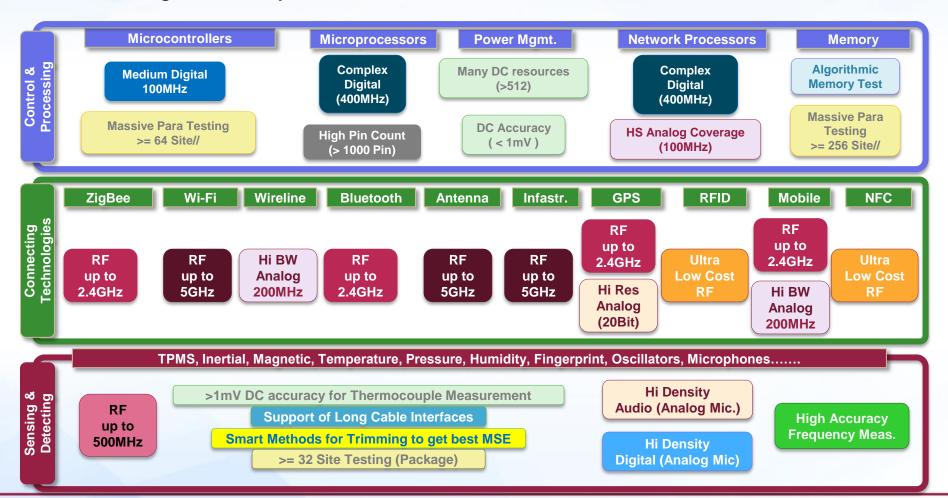
- → High throughput (test-time & MSE)
- → COT optimized test solutions

Unpredictability of emerging market

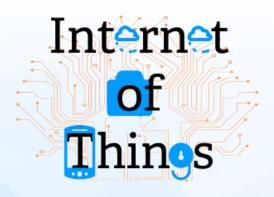
- Low volume/High mix (High runners?)
- In-house vs Outsource

- → Fast Time to Quality
- → Expandability of ATE system
- → Availability at OSATs

Technical & economic trends are breaking installed tester base


IoT Market Map

- Processing & Control still will dominate IOT Scenario
- Connecting Technologies to play significant role
- Sensor & Actuators will follow


IoT Market needs

- Best Flexibility
- High Parallelism and High Multi-Site Efficiency (MSE)
- High Accuracy

IOT Tester Architecture Requirements

Universal Pin Concept for IoT

Digital

- Excellent signal fidelity (from kHz to 1.6Gbps)
- Voltage range 2.0 .. 6.5 V
- SCAN: narrow, wide and SerDes
- All protocols (I2C, SPI, DSI3, SPI5, ...)
- OTP / eFlash programming / testing
- · Driving large capacitance loads

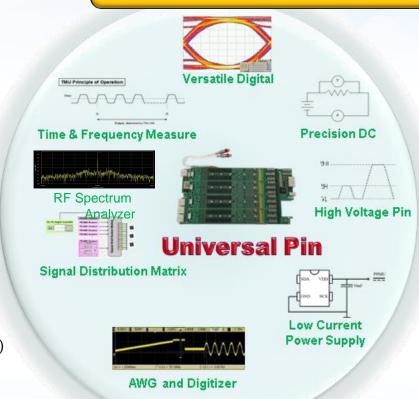
RF

RF Spectrum Analyzer up to 800MHz

DC / VI

- · Sequencer/pattern controlled
- Precise voltage/current measurements (1mV, 10nA)
- Device trimming/calibration in parallel

DPS


- · PPMU as low current power supply
- Up to 40mA (60mA /16 pins per module), slew control
- Idd (quiescent (10nA), operating, standby)

Analog

- AWG per pin: for static & dynamic test (>86dB @ 20KHz sine)
- Digitizer per pin: 54 Ksps static, 250 Ksps dynamic

Frequency & Time Measurement Unit

 Fast and accurate time measurements (frequency, jitter) (50Msps, 35ps accuracy) 128 ... 1024 "Universal Pins" in V93000 A-Class Test Head!

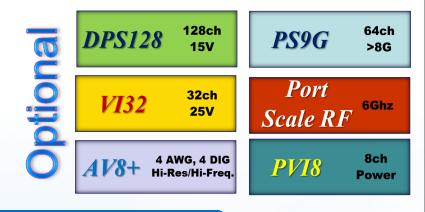
Tester resources for all device functions behind each pin

Higher Performance Tester Requirements for IoT

Higher performance Digital IO

• Higher speed Serial and/or Parallel interfaces (eg SERDES, Memory Interfaces, ...)

Higher performance DPS / DC / VI


Higher Power voltage/current measurements

Higher performance Analog

Higher performance AWG and Digitizer for static & dynamic test

Higher performance RF

· RF Source and Measure

Higher Performance Tester resources available as options if needed

Scalable Test Platform for IOT

- Smaller, low pin-count configurations
 - Lowest capex
 - Smaller devices
 - Engineering, "Lower" Volumes

- Larger, high pin-count configurations
 - Larger devices
 - Higher levels of multi-site
 - "Higher" Volumes

Same Performance, Same SW, Same DUT board, Same Wafer Prober/Handler I/F

IoT Sensors Handling & Stimulus

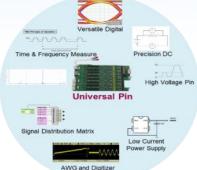
Test Cell Solution is required

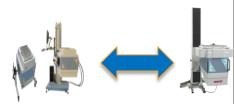
- Tester (~25% of test Cell cost)
- Handler for HVM & Engineering
- Sensor Stimulus
 - Inertial
 - Temp/Hum
 - Pressure
 - Magnetic

Partnership with Sensors Handler Manufacturers

- Propose 'turnkey' solutions for new players
- Unique interface with customer for problems solving

IoT Test Platform


Integrates Digital, DPS, Analog, Mixed Signal,
 RF and Memory Test in one scalable platform


• Universal Pins for maximum flexibility & slim configuration

 Scalable from small, low pin count configurations (for lowest capex), to larger, high pin count configurations (for highest levels of multi-site) with the same performance and HW/SW compatibility

Broad availability in market and in OSATs

Thanks you for your attention!

