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:'Future Technology Trends

Complex Devices: Complex Patterning: Complex Structures:
Vertical ITI-V NanoWire SADP>SAQP>SAOP? BEOL Passives & Memory
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« All the future technology trends point to increased structural complexity
« Cost and development cycle-time will increase
« Systematic structural defectivity becomes the limiter to yield-ramp
 The role of Process Integration becomes essential to development success

* Process Integrators need to be armed with the right tools
« Traditional TCAD modeling is useful for individual transistors
« Ab-Initio modeling is useful for novel materials and unit processes
« But the process integrator typically relies on running experimental wafers!
« Trial-and-Error Silicon Engineering is NOT ACCEPTABLE!!!



Integration Modeling
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SEMulator3D®

A Powerful 3D Semiconductor Virtual Fabrication Platform

Layout Editor:
Design, OPC, PrintSim, etc.

SEMulator3D Voxel
Modeling Engine

3D Viewer:
Process Editor: RMG FinFET Demo
Step-by-Step Process Self-Aligned Contact
Behavioral Description TEFMHM BEOL w/ SAV

Applicable to ANY process & ANY layout
Replaces build & test with accurate 3D modeling of large areas & complex process sequences
Provides validation and visualization of relationships between design and process

Provides a predictive view of design-technology interactions



SOV ENTORS hique 3D Modeling Technology

Other Process Modeling Tools

aBased on either BREP or moving
mesh technology

o Surfaces are modeled with
mathematical equations or discrete
polygons

0 Works for simple, well-defined models

0o Fail or become unreliable for very
complex topology common in

Voxel Modeling (SEMulator3D) Semiconductor devices
0 Voxel = 3D Pixel
0 Created for high performance
0 Medical Imaging, Semiconductor Modeling
0 SEMulator3D modeling technology is
proprietary, unique and patented

aUnlike other 3D modeling tools,
SEMulator3D is very tolerant and does

not fail due to small mask or model SEMulator3D is more reliable,
defects accurate and faster than any other

_ _ 3D process modeling tool
nIdeal for arbitrarily complex 3D models

Voxel Model




R <111> facets form
i due to slow growth
/ ‘ on the <111> planes
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Epitaxial growth is sensitive to crystal planes
<111> directions normally grow slowest and
form limiting facets.
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Advanced Etch Modeling

Physics-driven etch modeling of  Key Features
O Multi-material film stacks « Etch physics:
0 Multiple types of etch physics . Redeposition (aka passivation)

« Sputtering (physical etching)
« Etch bias (lateral or chemical etching)

BCD: 110nm

STI Etches

TFMHM M2 Overetch
Spacer Etches



Pattern Dependence

* Models account for multiple pattern-dependent effects:
Aspect Ratio Dependent Etching (ARDE), RIE Lag, etc.
Pattern Density effects: Isolated vs. Nested features

 Works with Basic Etch and MultiEtch process models
- Pattern Dependence feature enabled in Advanced Modeling Package
« Calibration "Wizard” included to make parameter input simple

Large feature etches much Isolated features etches
deeper, with more lateral bias Features in center of dense array etch shallower, with more
and higher hardmask deeper than at the edge of the array vertical sidewalls

consumption




Cross-Sectional SiGe Area [nm2]

Virtual Metrology Operations

Automate in-line, local measurements of
critical technology parameters

Expeditor batch processing tool
» Automated, spreadsheet-driven massively

2000

Mimic real in-fab metrology

Replace slow out-of-fab destructive

characterization

parallel parameter studies

SiGe Area vs. <110> Growth Ratio

1500+

1000+

500+

0.1 0.2 0.3
<110> Growth Ratio

Fin Erosion

Automation

Virtual Metrology measurement options

Low <110> High Fin Nominal Low Fin High <110>
Rate Erosion Process Erosion Rate

Example: DOE study on FinFET Epitaxy on <100> notched wafer:
Dependence on pre-epitaxy fin erosion and epitaxial conditions
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€OV ENTOIR Structure Search

« Model CHECKING requires a more advanced form of measurement

« Structure Search FINDS specific criteria, anywhere in the model:
Location of minimum spaces, line-widths, thicknesses
Number of electrical nets (opens/shorts)

Location of minimum material interfaces

48nm Pitch Back End of Line (BEOL) Example

I

& .
! L. ~ f
< s( \‘f &

Minimum Insulator Net ID and Count V1-M2 Contact Minimum Cu Width
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(1) SEMulator3D Material View of
64nm BEOL

>l

(4) SEMulator3D Electrical
View of M1-V1-M2 Demo
Build (5 nets)

(2) SEMulator3D Initial Mesh

(5) CoventorWare View of
Imported Volume Mesh

Meshing Module

(3) SEMulator3D Refined Mesh

3 Capacitance Matrix (pF)

(6) CoventorWare Capacitance
Matrix Solution

Meshing allows use of
realistic structures for
electrical modeling
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4F2 BWL DRAM GAA Si Nanowire 3D NAND Flash

Accuracy & Detail — Development Timeframe

Proprietary Model: Iterative
Perfect for complex predictive problems

Calibrated Model: Based on existing HW data

Perfect for IP validation, parasitic extraction, flow optimization

Realistic Model: Basic process knowledge, improved geometric accuracy
Perfect for design-technology co-optimization, flow development, testsite structure identification

Basic Structural Model: Simplistic depositions and etches, no process details
Perfect for startup integration definition, process visualization, documentation, generated mask verification
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3 BEOL Development

Obvious: BEOL processes are pushed to the limit at 14nm

New patterning schemes to achieve density.
New metallization schemes for yield and reliability.

1. High aspect ratio integration challenges

2. Variability becoming larger portion of nominal dimensions
3. Parasitic R/C trade-offs driving hierarchical BEOL

4. Next-node BEOL scaling remains non-trivial

M, — Lithol M, —Litho2 V(4 — SAV Etch  Trench Etch Liner/CuBS CMP
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‘L“.

Unit process cross-wafer behavior is easily
validated from inline metrology

The cross-wafer requirement is integrated

and electrical
* Costly & time-consuming to verify on HW

Typical practice involves individual process
optimization, driving toward a “flat” profile for
all processes

SEMulator3D provides a predictive
methodology for evaluating integrated
structural results (using virtual metrology) due
to multiple forms of variation across the wafer
(using Expeditor)

* Process Co-optimization

* Intelligent APC

3 . Cross-Wafer Uniformity
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Design Awareness

V1-M1 Interface Area vs. V1 Overlay

1200
11004
10004
9004
8004
7004
6004
500+
400+
300+
200+
100+

SEMulator3D models
are the intersection of Region

design and process
M2 4terest

Integrated structural
response to variations
of multiple processes M1

V1-M1 Interface Area [nm2]
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FINFET Development

Obvious: FIinFET is the transistor architecture for the future of CMOS

Sub-threshold slope from double-gate structure improves power-performance

BUT...

1. 3D structural integration challenges

2. New variability sources: Body thickness/shape, epi, MOL, etc.
3. New parasitic R/C trade-offs

4. Next-node FET scaling remains non-trivial

Fin/STI Sacrificial Gate  Spacers/Epi Metal Gate Middle of Line

17



MOL Variation Analysis

* Predictive process
deck built using
public TEMs

 Variation analysis
using Expeditor
batch tool

Example
Self-Aligned Contact
Overlay Variation

Contact Area vs. Overlay

 Virtual Metrology extracting 3D interface — 50000 N v
. <
surface area — would require out-of-fab £, son0o ~
destructive characterization < w00 ~
. Phys_lc_:a_l parame?er serves as_ele_c_:trlcal B \\x
sensitivity for resistance or reliability T e

Crite ri a 0.0 510 1[;_[] 15‘.0 2[::_0 25‘_[]

Contact Overlay Error [nm]
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(1) SEMulator3D Material View of (2) SEMulator3D Initial Mesh
FinFET FEOL

(4) SEMulator3D Electrical (5) CoventorWare View of
View of FinFET FEOL Demo Imported Volume Mesh
Build (4 nets)

(3) SEMulator3D Refined Mesh

[ Capacitance Matrix (pF) @

Com | Gate | nsrc | pDrm

Com | 8.910255E-02 | -B.460155E-02 | -2.303558E-03 | -2.197076E-03

Gate | -8.460155E-02 | 1.548899E-01 | -2.425008E-02 | -4 613861E-02

nSrc | -2.303559E-03 | -2.425008E-02 | 2.737773E-02 | -8 242907E-04

pOrn | -2.187076E-03 | -4.619861E-02 | -8.242907E-04 | 4.816014E-02

[o)

(6) CoventorWare Capacitance
Matrix Solution

Meshing allows use of
realistic structures for
electrical modeling
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Memory Development

Obvious: Cost/bit NVRAM scaling has introduced CRAZY 3D structures
Vertical bit-line integration, multi-layer integration, etc.

BUT...

1. High aspect ratio integration challenges

2. Defects in multi-layer stack have wide-ranging implications
3.

20



Macro- vs. Micro-

Macro-scale — Example: Overall Integration
Large multi-regional structure
Complex multi-module integration

Modeling:
Large layout area selection

1.0 nm resolution
Basic Etch Model

Micro-scale — Example: Plug Etch/Fill
High aspect ratio etch
Multi-layer cyclic etch process
Profile details are critical

Modeling:
Layout area subset

0.5 nm resolution
Advanced Etch Model

SEMulator3D offers simple flexibility to explore different
‘ scales of physical challenges at high speed

21



Defect Evolution

Defect
‘magnification”
through remainder
of stack deposition

60nm metal defect
embedded during
early phases of
multi-layer stack
deposition

Defect blocks “plug
etch’, Kills one
bitline (expected).
Plug module is
robust enough for
nearby bitlines to
survive, despite
non-planarity

SEMulator3D enables defect

evolution understanding for yield
ramp calculation and optimization

Non-planarity affects
“slit etch” later in flow.
Results in underetch
and shorted control
gates. Kills entire sub-
array block.

NOT EXPECTED!!!
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) SEMulator3D in the Market

" OVENTO

Cpk Based Variation Reduction: 14nm FInFET
Technology

Rohit Pal, Alex Chen, Xing Zhang, Sruthi Muralidharan, Laks Vanamurthy, Girish Bohra, Chloe Yong,
Mitsuhiro Togo, Changyong Xiao, Si-Gyung Ahn, Yuan-Hung Liu, Puneet Khanna, Dinesh Koli, Zhe Chen,
Owen Hu, Karen Riding, Manfred Eller, Rick Carter, Srikanth Samavedam

SEMICON" é@ GLOBALFOUNDRIES'
West20/4 '

22nm Technology Yield Optimization Using
Multivariate 3D Virtual Fabrication

B. Cipriany . B. Jagannathan. G. Costrini. A. Noemaun. D. Fried'. K. Greiner. D. Faken. S. Breit
K. Onishi. S. Narasimha. B. Zhang. C. Sheraw, J. Meiring, Coventor, Inc.
M. Kumar. K. Nummy. N. Zhan. H. Nanjundappa. Cambridge, MA, US
J. Norum. S. Furkay. R. Malik. P. Agnello "david fried@coventor.com

Norm. Nitride Thickness (arb)
(9) uonjerrep Jjuswadeld abp3

breipria@us.ibm.com

IBM Semiconductor Research & Development Center
H(:pvu‘ell Junction, NY, US 5 IS PA D

nFET Center PFET

Position

A comparison of the pattern transfer of line-space patterns from
graphoepitaxial and chemoepitaxial block co-polymer directed self-

assembly SPI E "

Dan B. Millward*®, Gurpreet S. Lugani?, Ranjan Khurana®, Scott L. Light®, Ardavan Niroomand®,
Phillip D. Hustad*¢, Peter Trefonas®, Shih-Wei Chang®, Christopher N. Lee®, Dung Quach®,
*Micron Technology, Inc., 8000 S. Federal Way, Boise, ID 83707, USA;

"Micron Technology, Inc. Belgium; Kapeldreef 75, 3001 Leuven, Belgium;

‘Dow Electronic Materials, 455 Forest St., Marlborough, MA 01752 USA;
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SEMulator3D at IMEC

OLD design :litho + etch bias  NEW design: litho + etch bias

- lcom e

\ Tﬁe\s‘emiconducfor kal Projecf

Imec and Coventor Partner Up

by Paul McLellan
Published on 10-28-2014 06:00 AM

Solid State
TECHNOLOGY.

for EI

Undesired
epi growth

Imec, Coventor partner to advance CMOS process de-
velopment

INTERTWINED CHAIN: T
FAILURE DUETO UNDERSIZED BLK ~ \imee

Target Structure showing
SHORTED chains

101 HK=1.5 nm
FMG: 7 nm

Target Structure showing
independent chains

. 2
12 14 16 18 2022 24 26 28
LG (nm)

N S SSS— W —

*Colours = independent
electrical loops
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K . A Virtual Learning Cycle

Utilize parallel computing infrastructure to dramatically accelerate development!

Silicon Cycle of Learning:
« Wafers: 40 WSD * 3 months

« 150 5-way Experiments

» All subject to variation

» All captive to other processes
« Characterization: Additional Resource
« Analysis: Additional Resource
« Cost ~ $50M

Virtual Cycle of Learning:
« 150 |solated 5-way Experiments
* 30 minute model build
* High Resolution (~5A)
» 20 designs: Key Library Elements
« Characterization: Built-in (Virtual Metrology)
» Analysis: Pre-processed (Expeditor)
« 512 CPUs (4 CPUs/case): 2.4 days

o
S St
=3

:;1[-;' ~i S ' :

g R
&

S0 (3): POR
L, ,$1.'3l2'7§.rocessl E
CUET Bl ): Process ]
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' S4 (3): Process 4
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<8 4

\ 512 CPUs

3\2.5 2.4 days

\

kA
\78.1
e 39.1
N, 19598 49 74
\0\.__A °
10 100 1000

Total CPUs Allocated
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Advanced process technologies require Virtual Fabrication
Process complexity will impact Logic, SRAM, DRAM, Flash, etc.

Process development with Virtual Fabrication saves time, money
and development resources
SEMulator3D Virtual Fabrication = more than visualization:
Cross-wafer process uniformity optimization and APC
Process centering conditions and sensitivity analyses
Meshing for electrical analysis such as Parasitic Extraction
Process corner analysis and design-process interaction sensitivities
Defect evolution exploration and yield-ramp optimization
Virtual Fabrication benefits all semiconductor user groups:
Technology Developers: IDMs and Foundries
Fabless: Foundry Interface, IP Validation, DFM
Equipment/Process: Process co-optimization, APC, Integration context

| Thank you for your time
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MEMS & Semiconductor
SOFTWARE

SEMulator3D 5.0

coming soon....



